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Abstract

World models learn the consequences of actions in vision-based interactive systems.
However, in practical scenarios such as autonomous driving, there commonly
exists noncontrollable dynamics independent of the action signals, making it
difficult to learn effective world models. To tackle this problem, we present a
novel reinforcement learning approach named Iso-Dream, which improves the
Dream-to-Control framework [22] in two aspects. First, by optimizing the inverse
dynamics, we encourage the world model to learn controllable and noncontrollable
sources of spatiotemporal changes on isolated state transition branches. Second,
we optimize the behavior of the agent on the decoupled latent imaginations of the
world model. Specifically, to estimate state values, we roll-out the noncontrollable
states into the future and associate them with the current controllable state. In this
way, the isolation of dynamics sources can greatly benefit long-horizon decision-
making of the agent, such as a self-driving car that can avoid potential risks by
anticipating the movement of other vehicles. Experiments show that Iso-Dream is
effective in decoupling the mixed dynamics and remarkably outperforms existing
approaches in a wide range of visual control and prediction domains.

1 Introduction

Humans can infer and predict real-world dynamics by simply observing and interacting with the
environment. Inspired by this, many cutting-edge Al agents use self-supervised learning 37,120 [12]
or reinforcement learning [38| 22| |41]] techniques to acquire knowledge from their surroundings.
Among them, world models [20] have received widespread attention in the field of robot visual
control, and led the recent progress in model-based reinforcement learning (MBRL) [22} 41}, 124, [29].
A typical approach [22] is to use the trajectories of observations and control signals collected by an
RL agent to learn a differentiable simulator of the environment, namely the world model, and then
update the RL agent by optimizing the behaviors on the latent imaginations of the world model.

However, since the observation sequence is high-dimensional, non-stationary, and often driven by
multiple sources of physical dynamics, how to learn effective world models in complex visual scenes
remains an open problem. In realistic scenarios such as autonomous driving, we can generally divide
spatiotemporal dynamics in the system into controllable parts that perfectly respond to action signals,
and parts beyond the control of the agent, such as the movement of other vehicles and other external
changes. The isolation of controllable and noncontrollable states can improve MBRL in two aspects:

* Modular representation improves the generalization of the agent to non-stationary environments
with noises, such as the time-varying background in our modified DeepMind Control Suite.

*Equal contribution.
fCorresponding author: Yunbo Wang.
Code available at https://github.com/panmt/Iso-Dream
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Figure 1: Probabilistic graph of Iso-Dream. It learns to decouple complex visual dynamics into
controllable states (s;) and noncontrollable states (z;) by optimizing the inverse dynamics (Red
dashed arrows). On top of the disentangled states, it performs model-based reinforcement learning by
explicitly considering the predicted noncontrollable component of future dynamics (Blue arrows).

* More importantly, it improves long-horizon RL tasks that can greatly benefit from decisions based
on predictions of future noncontrollable dynamics. For example, in autonomous driving, potential
risks can be better avoided by predicting the movement of other vehicles.

We present Iso-Dream, a novel MBRL framework that learns to decouple and leverage the controllable
and noncontrollable state transitions. Accordingly, it improves the original Dreamer [22] from two
perspectives: (i) a new form of world model representations and (ii) a new actor-critic algorithm to
derive the behavior from the world model. As shown in Figure|[T} the foundation of decoupling the
world model is to separate the mixed latent states into an action-conditioned branch and an action-free
branch, which can individually transit different sources of visual dynamics. The components are
jointly trained to maximize the variational lower bounds. To further isolate the controllable states,
the action-conditioned branch is also optimized with inverse dynamics, that is, to reason about the
actions that have driven the state transitions between adjacent time steps.

Another contribution of Iso-Dream is to find that disentangling physical dynamics can greatly benefit
the downstream decision-making tasks by more accurately foreseeing the inherent changes in the
environment. Intuitively, humans can decide how to interact with the environment at each moment
based on their anticipation of future changes in the surroundings. To make more forward-looking
decisions, as shown by the blue arrows in Figure[I] the policy network integrates the current control-
lable state and multiple steps of predicted noncontrollable states through an attention mechanism. It
enables the agent to thoroughly consider possible future interactions with the environment.

We evaluate Iso-Dream in the following domains: The modified DeepMind Control Suite with noisy
video background; The CARLA autonomous driving environment in which other vehicles can be
naturally viewed as noncontrollable components; The real-world BAIR robot dataset and the RoboNet
dataset that are helpful to validate the effectiveness of the world model for disentanglement. On all
benchmarks, Iso-Dream remarkably outperforms the existing approaches by large margins.

2 Related Work

Action-conditioned video prediction. A straightforward deep learning solution to visual control
problems is to learn action-conditioned video prediction models [37, 14} |8, 52] and then perform
Monte-Carlo importance sampling and optimization algorithms, such as the cross-entropy methods,
over available behaviors [[15} 12, [28]]. Hot topics in video prediction mainly includes long-term and
high-fidelity future frames generation [43] 42, |50, 15, 51} 49, 153} 140, 39, 135} 155} 27, 2], dynamics
uncertainty modeling [[1}110; 47,130, 7, [16l 54]], object-centric scene decomposition [46 26| 18|57, 3],
and space-time disentanglement [48), 26, (19, |6]. The corresponding technical improvements mainly
involve the use of more effective neural architectures, novel probabilistic modeling methods, and
specific forms of video representation. The disentanglement methods are closely related to the world



model in Iso-Dream. They commonly separate visual dynamics into content and motion vectors,
or long-term and short-term states. In contrast, Iso-Dream is designed to learns a decoupled world
model based on controllability, which contributes more to the downstream behavior learning process.

Visual MBRL. In visual control tasks, the agents have to learn the action policy directly from
high-dimensional observations. They can be roughly grouped into two categories, that is, model-free
methods [33} 56} 311 32, 25] and model-based methods [[15} 38} 20} 23, 22, |29} |41}, |58} 14]. Among
them, the MBRL approaches explicitly model the state transitions and generally yield higher sample
efficiency than the model-free methods. Ha and Schmidhuber [20] proposed the World Models
that first learn compressed latent states of the environment in a self-supervised manner, and then
train the agent on the latent states generated by the world model. Following the two-stage training
procedure, PlaNet [23]] uses an action-conditioned, recurrent state-space model (RSSM) as the world
model, and optimizes the action policy on the recurrent states with the cross-entropy methods. In
Dreamer [22] and DreamerV?2 [24], agents learn behaviors by optimizing the expected values over the
predicted latent states in RSSM. InfoPower [4] prioritizes functional-related information from visual
observations to obtain a more robust representation for MBRL. Notably, Iso-Dream is very different
from InfoPower in two aspects. First, we explicitly model the state transitions of controllable and
noncontrollable dynamics, so that it is possible to choose whether to take the noncontrollable states
into behavior learning according to the prior knowledge of a specific domain. Second, we propose a
new behavior learning method that greatly benefits from the decoupled world model, so that we can
preview possible future states of noncontrollable patterns before making decisions at this moment.

3 Method

In this section, we first present basic assumptions and the general framework of Iso-Dream for
decoupling and leveraging controllable and noncontrollable dynamics for visual control (Section [3.1).
For representation learning, we introduce the three-branch world model and its training objectives
of inverse dynamics (Section [3.2). For behavior learning, we present an actor-critic method that is
trained on the imaginations of the decoupled world model latent states, so that the agent may consider
possible future states of noncontrollable dynamics (Section[3.3)). Finally, we discuss how Iso-Dream
is deployed to interact with the environment (Section [3.4).

3.1 Basic Assumptions of Iso-Dream

As shown in Figure|l] when the agent receives a sequence of visual observations o1.7, the underlying
spatiotemporal dynamics can be defined as u;.7. Our goal is to understand the inner relationships of
different dynamics by decoupling u1.7 into controllable latent states s1.7 and noncontrollable latent
states z1.7 that vary in spacetime, such that:

ur.T ~ (572)1:Ta St+1 Np(5t+1 | 5t7at)7 Zt+1 NP(Zt+1 | Zt)7 (D

where a; is the action signal. To achieve long-term prediction, we isolate s; and z; to each other and
model their state transitions of p(s;y1 | S¢, a¢) and p(z¢41 | 2¢) respectively.

According to our prior knowledge of the environment, we can optionally choose whether to roll
out the noncontrollable states and consider them during behavior learning. For tasks where the
noncontrollable components can be viewed as time-varying noise, we simply derive the action policy
by a; ~ m(as | s¢). The isolation of controllable states improves the generalization of the agent to
non-stationary systems. For tasks like autonomous driving, the behaviors are derived by

ag ~ W(at | Stazt:tJr'r)a )

where we calculate the relationships between s; and the imagined noncontrollable states over time
horizon 7. It assumes that, in specific long-horizon tasks, the agent can greatly benefit from predicting
the consequences of external noncontrollable forces.

3.2 Representation Learning of Controllable and Noncontrollable Dynamics

Inspired by previous approaches [36} 17] showing that modular structures are effective for disentan-
glement learning, we leverage a three-branch architecture to decouple u, into controllable dynamics
state s;, noncontrollable dynamics state z;, and time-invariant representation of the background. As
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(a) World model of Iso-Dream (b) Learn behavior in imagination

Figure 2: The overall architecture of the world model and the behavior learning algorithm in Iso-
Dream. (a) World model with three branches to explicitly disentangle controllable, noncontrollable,
and static components from visual data, where the action-conditioned branch learns controllable state
transitions by modeling inverse dynamics. (b) The agent optimizes the behaviors in imaginations of
the world model through a future state attention mechanism.

shown in Figure [2(a)] the action-conditioned branch models p(s¢41 | S¢, a). It follows the RSSM
architecture from PlaNet [23]] to use a recurrent neural network GRU(+), the deterministic hidden
state h;, and the stochastic state s; to form the transition model, where the GRU keeps the historical
information of the controllable dynamics. The action-free branch models p(z;11 | 2;) with similar
network structures. The transition models with separate parameters can be written as follows:

(5t | s<t,a<t) =p(5¢ | he), where hy = GRUg(hs—1, S¢—1,a¢—1),

- - 3)
p(Zt | 2<1) = p(Z | hy), where hy = GRU.(h}_q,21—1)-

We here use $; and Z; to denote the prior representations. We optimize the transition models with
posterior representations that are derived from s; ~ q(s; | ke, 0¢) and 2 ~ q(z; | b, 0¢). We learn
the posteriors from the observation at current time step o; € R**#*W by a shared encoder Ency and
subsequent branch-specific encoders Ency, and Ency,.

To enhance the disentanglement representation learning corresponding to the control signals, we
introduce the training objective of inverse dynamics. Accordingly, we design an Inverse Cell of a
2-layer MLP to infer the actions that lead to certain transitions of the controllable states:

Inverse dynamics:  a;—1 = MLP(s;_1, $¢), )

where the inputs are the posterior representations in the action-conditioned branch. By learning to
regress the true behavior a;_1, the Inverse Cell facilitates the action-conditioned branch to isolate
the representation of the controllable dynamics. To avoid the training collapse where the action-
conditioned branch captures most of the useful information, while the action-free branch learns almost
nothing, in the process of image reconstruction, we respectively use the prior state s; and the posterior
state 2; to generate the controllable visual component 6; € R3*#>W with mask M; € RI>XH*W
and the noncontrollable component 67 € R3*7XW with M7 € R>*H*W By further integrating the
time-invariant information extracted from the first X frames, we have

6y = Mf © 65 + Mf ©® 67 + (1 — M — M?) ®6°, where 6" = Decy, (Encg 4, (01.x))). (5)

For reward modeling, we have two options with the action-free branch. In one case, the noncontrol-
lable dynamics can be considered as noises that are not related to the task, and therefore z; is no
longer useful during imagination. In other words, the policy and the predicted reward are only related
to the controllable states. In the other case, future noncontrollable states would affect how the agent
makes decisions, and we consider the action-free components during behavior learning. For this, we
learn alternative reward models p(r; | s¢) or p(ry | S¢, 2¢) in forms of MLPs.



Algorithm 1: Iso-Dream (Highlight: Our modifications to behavior learning & policy deployment)

1 Hyperparameters: L: Imagination horizon; 7: Window size for future state attention
2 Initialize the replay buffer B with random episodes.
3 while not converged do

4 for update stepc =1...C do

5 Draw data sequences {(0s, a¢,7¢)}_, ~ B.

6 // Representation learning

7 Compute world model loss using Eq. (6) and update model parameters.

8 // Behavior learning

9 Roll-out the noncontrollable states {57 }f;’jf from z; through the action-free branch alone.
10 for time step j =1i...1+ L do

1 Compute latent state e; ~ Attention(S;, Z;:j4-) using Eq. (7).

12 Imagine an action a; ~ mw(ajle;).

13 Predict the next controllable state §;41 ~ p(§;, a;) using the action-conditioned branch alone.
14 end

15 Update the policy and value models in Eq. () using estimated rewards and values.

16 end

17 // Environment interaction

18 01 < env.reset()

19 for time stept =1...7T do

20 Calculate the posterior representation s ~ q (s¢ | ht,0t) , 2¢ ~ q (2t | by, 04).

21 Roll-out the noncontrollable states Z;4 1.4+~ from z; through the action-free branch alone.
2 Generate a; ~ 7(a¢ | St, 2, Zt+1:4+-) using future state attention in Eq. (]Z[)

23 T't, 041 <— env.step(at)

2 end

25 Add experience to the replay buffer B < B U {(o¢, a, rt)z;l }.
26 end

For a sequence of (o4, as, 7)1, sampled from the replay buffer during training, the world model can
be optimized using the following loss functions, where «, 31, and 32 are hyper-parameters:

T
L= E{Z —Inp(o; | he,se, hyy 2e) =Inp(re | ey se, by, 2e) =Inp(ye | he, se, by, 21)
t=1

image log loss reward log loss discount log loss (6)
+ ala(ar, @) + B1KLIg(se | he,00) | p(st | he)] + B2KLlq(z | hiy o) | p(ze | hy)l}-
action loss KL divergence

The world model training approach can be partly customized for different environments. In situations
where noncontrollable states are indeed involved in behavior learning, minimizing the ELBO objective
can maintain the semantics of z;. Otherwise, if the action-free features are only used to prevent noisy
distractions from affecting the training process of Iso-Dream, rather than being used for behavior
learning, we can simply train the action-free branch with the reconstruction loss alone.

3.3 Behavior Learning in Decoupled Imaginations

Thanks to the decoupled world model, we can optimize the agent behaviors to adaptively consider
the relations between available actions and possible future states of the noncontrollable dynamics.
A practical example is autonomous driving, where the motion of other vehicles can be naturally
viewed as noncontrollable but predictable components. As shown in Figure 2(b)] we here propose
an improved actor-critic learning algorithm that 1) allows the action-free branch to foresee the
future ahead of the action-conditioned branch, and 2) exploits the predicted future information of
noncontrollable dynamics to make more forward-looking decisions.

Suppose we are making decisions at time step ¢ in the imagination period. A straightforward solution
from the original Dreamer method is to learn an action model and a value model based on the isolated
controllable state 5; € R**¢, However, we notice that by employing an attention mechanism, we can
explicitly calculate its relations to a sequence of future noncontrollable states ;. , € R7*?, where



T is the length of a sliding window from now on.
Future state attention: e; = softmax(5; 2Zt+7) Zetar + St @)

In this way, §; evolves to a more “visionary” representation e; € R'*?. We update the action model
and the value model in Dreamer [22] as follows:

t+L
Action model: a; ~ 7(a; | e;), Value model: we(er) = Er(e,) Z'yk_trk, 8)
k=t

where L is the imagination time horizon. As shown in Alg. |1} during imagination, we first use the
action-free transition model to obtain sequences of noncontrollable states of length L + 7, denoted
by {Zz}zif *7. At each time step in the imagination period, the agent draws an action a; from the
visionary state e;, which is derived from Eq. (7). The action-conditioned branch uses the action a; in
latent imagination and predicts the next controllable state s;41. We follow DreamerV2 [24] to train
the action model to maximize the A-return [44]], and train the value model to regress the /\-returlﬂ

3.4 Policy Deployment by Rolling-out Noncontrollable Dynamics

As discussed above, in the cases that noncontrollable dynamics are irrelevant to the control task,
when interacting with the environment, we only use the state of controllable dynamics to generate
the policy at each time step t. However, for the situation where noncontrollable dynamics should
be closely related to the behavior of the agent, as shown in Lines 21-22 in Alg. [I] the action-free
branch consecutively predicts the next 7 — 1 noncontrollable states Z;4 1., starting from the current
posterior state z;. Similar to Eq. in the process of behavior learning, we here use the learned
future state attention network to adaptively integrate sy, 2; and Z;41..4,. Based on the integrated
feature ey, the Iso-Dream agent draws a; from the action model to interact with the environment.

4 Experiments

4.1 Experimental Setup

Benchmarks. We quantitatively and qualitatively evaluate Iso-Dream on two reinforcement learning
environments, i.e., DeepMind Control Suite [45] and CARLA [11], and two real-world datasets for
action-conditioned video prediction, i.e., BAIR robot pushing [13] and RoboNet [9]. The video
prediction experiments can provide more intuitive visualizations of disentanglement learning.

Compared methods. For the visual control tasks, we compare our approach with five baselines,
including both model-based and model-free methods, i.e., DreamerV2 [24]], CURL [33]], SVEA [23]],
SAC [21], and DBC [58]]. For action-conditioned video prediction, we mainly compare our decoupled
world model with three approaches, i.e., SVG [10], SA-ConvLSTM [34] and PhyDNet [19].

4.2 DeepMind Control Suite

Implementation details. In order to verify the enhancement of Iso-Dream by disentangling differ-
ent components under complex visual dynamics, we evaluate Iso-Dream on environments from DMC
Generalization Benchmark. Instead of training on original DeepMind Control Suite environments,
agents are trained and tested both with natural video backgrounds (i.e. video_easy environments).
In this environment, since the background is randomly replaced by a real-world video, the non-
controllable motion of the background can affect the procedure of dynamics learning and behavior
learning of agents. Therefore, to obtain a better decision policy and avoid the disruption from noisy
backgrounds, the agent may decouple noncontrollable representation (i.e., dynamic background) and
controllable representation in spacetime, and only use controllable representation for control. To this
end, we simply train the action-free branch with only reconstruction loss and discard it in imagination
and policy deployment. We evaluate our model with baselines in 4 tasks from four different domains.
The number of environment steps is limited to 500k.

3Details of the loss functions can be found in Eq. (5-6) in the paper of DreamerV2 [24] .



Table 1: Performance of visual control tasks in the DMC Suite. The agents are trained and evaluated
in environments with video_easy dynamic background. We report the mean and std of final
performance over 3 seeds and 5 trajectories. *We use a different setup from that in the paper of DBC.

TASK \ SVEA CURL DBC* DREAMERV2 ISO-DREAM
WALKER WALK | 826 +65 443 £206 3247 655 £ 47 911 £ 50
CHEETAH RUN 178 64 269 + 24 15+5 475 + 159 659 + 62
FINGER SPIN 562 £22 280450 1+£2 755 £92 800 £ 59

HOPPER STAND 6+8 451 +£250 S5+£9 260 £ 366 746 + 312

t=5 =10 t=15 =20

True frame

Prediction

Action-cond|
RGB

Action-free
RGB

Action-free
mask

Figure 3: Video prediction results on the DMC (left) and CARLA (right) benchmarks of Iso-Dream.
For each sequence, we use the first 5 images as context frames. Iso-Dream successfully disentangles
controllable and noncontrollable components.

Quantitative results. To evaluate the performance, we train and test the agents in environments
with video backgrounds. As shown in Table[I] Iso-Dream exceeds the performance of DreamerV2 and
other baselines in all tasks, indicating that the three-branch structure can effectively learn task-related
visual representations and alleviate complex background interference in visual data.

Qualitative results. We leverage Iso-Dream to complete video prediction tasks in video_easy
environments. The sequence of frames and actions are randomly collected during test episodes. The
first 5 frames are given to the model and the next 45 frames are predicted only based on action inputs.
To show the qualitative results, we visualize the masks and visual decoupled components from the
action-conditioned and action-free branches. The overall visualization is shown in Figure [3]left).
From this prediction result, we can find that Iso-Dream has the ability to predict long-term sequence
and disentangle controllable and noncontrollable dynamics from images in video_easy environ-
ments. As shown in the third and fourth row of action-conditioned branch output in Figure 3] the
controllable representation has been successfully isolated and matches its mask. Besides, in this
visualization, the action-free component in this background video is the motion of sea waves, which
is captured by the fifth and sixth row of action-free branch outputs.
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Figure 4: Performance with 3 seeds on the CARLA driving task. (a) Comparison of existing methods,
in which Iso-Dream outperforms DreamerV2 by a large margin. (b) Ablation studies that can show
the respective impact of optimizing the inverse dynamics ( ), rolling out noncontrollable states
(green), and modeling the time-invariant information with a separate network branch (red).

4.3 CARLA Autonomous Driving Environment

Implementation details. In the autonomous driving task, We use a camera with 60 degree view on
the roof of the ego-vehicle, which obtains images of 64 x 64 pixels. Following the setting in the DBC
[58], in order to encourage highway progression and penalise collisions, the reward is formulated
as: 1y = veTgoﬁh - At — & - T— & - |steer|, where vy, is the velocity vector of the ego-vehicle,
projected onto the highway’s unit vector %y, and multiplied by time discretization At = 0.05 to
measure highway progression in meters. Impulse I € R is caused by collisions, and a steering
penalty steer € [—1, 1] facilitates lane-keeping. The hyper-parameters ¢; and &, are set to 10~% and
1, respectively. We use 51 = 1, 82 = 1 and @ = 1 in Eq. (6) and 7 = 5 in Eq. (7).

Quantitative results. As shown in Figure Iso-Dream has significant advantages compared to
other baselines and outperforms DreamerV?2 by a large margin. Furthermore, we conduct ablation
studies to confirm the validity of inverse dynamics and the rolling-out strategy of noncontrollable
states. Figure [4(b)|shows that the performance drops when Inverse Cell is removed, indicating the
importance of modeling inverse dynamics to isolate controllable and noncontrollable components
from the whole dynamics. In order to verify the effectiveness of the proposed attention mechanism,
we conduct experiments to evaluate Iso-Dream where policy networks directly concatenate the current
controllable state and the noncontrollable state as input. Comparing the blue curve and green curve,
we observe that rolling-out noncontrollable states in the action-free branch can significantly improve
the agent’s decision-making results. The red curve shows that the performance of Iso-Dream degrades
by about 15% in the absence of a separate network branch that captures the static information.

Qualitative results. Reconstruction results of predictions in CARLA environment are shown in
Figure [3[right column). In CARLA, we observe that the agent actions potentially affect all pixel
values in the observation, as the camera on the main car (i.e., the agent) moves. Therefore, we view
the visual dynamics of other vehicles as a combination of controllable and noncontrollable states.
Accordingly, our model can determine which component is dominant by learning attention masks
(values between 0 and 1) across the action-conditioned and action-free branches. The ‘“action-free
masks” present hot spots around other vehicles, while the attention values in corresponding areas
on the “action-cond masks” are still greater than 0. The agent can avoid collisions by rolling-out
noncontrollable components to preview possible future states of other vehicles. We include more
showcases with different numbers of vehicles in the supplementary materials.

4.4 BAIR & RoboNet for Action-Conditioned Video Prediction

Implementation details. In order to evaluate the effectiveness of our world model in a more
complex environment, we test the video prediction ability of the proposed structure on BAIR and



Table 2: Video prediction results on BAIR and RoboNet datasets with bouncing balls. We use the
first 2 frames as input to predict the next 28 frames on BAIR and the next 18 frames on RoboNet.

BAIR ROBONET

MopEL PSNR1 SSIM? | PSNRT SSIM 1

SVG [10] 18.12 0.712 19.86 0.708

SA-CONVLSTM [34] 18.28 0.677 19.30 0.638

PHYDNET [19]] 18.91 0.743 20.89 0.727

Iso-DREAM 19.51 0.768 21.71 0.769

| Training set: BAIR Testing set: BAIR Training set: BAIR+ball Testing set: BAIR
SSIM
0.85 - rrrmmmmee e -
0.80 --- - -----ccreeeeee e e =
0.75 - 1 IR [EEEREEN R =
0.70 - | e | e -
0.65 - 1 E -
0.60 —
SVG SA-ConvLSTM  PhyDNet Iso-Dream SVG SA-ConvLSTM  PhyDNet Iso-Dream

Figure 5: The results of models trained on BAIR (blue) and BAIR + bouncing balls (red), and tested
on BAIR. We use the first 2 frames as input to predict the next 18 frames. The horizontal axis
represents the different models, and the vertical axes represent test results of PSNR and SSIM.

RoboNet dataset. Moreover, we add predictable visual dynamics unrelated to the control signals
to the raw observations, i.e., bouncing balls of the same size and speed. In the training phase, we
train the model to predict 10 frames into the future from 2 observations. For testing, we use the first
2 frames as input to predict the next 28 frames in the BAIR dataset, and the next 18 frames in the
RoboNet dataset. All inputs for training and testing are resized to 64 x 64. Considering the simplicity
and predictability of bouncing balls, in the action-free branch, we use a similar structure as in the
DMC experiment. Moreover, we replace the GRU cell with two layers of ST-LSTM unit [51] in both
branches. The optimization objective consists of image reconstruction loss and action reconstruction
loss of Inverse Cell. SSIM and PSNR are adopted as evaluation metrics.

Quantitative results. Table 2] gives the quantitative results on BAIR and RoboNet datasets with
bouncing balls in the training and testing phase. Compared with other models, Iso-Dream shows the
competitive performance in two datasets. For PSNR, Iso-Dream improves SVG by 7.7% in BAIR
and 9.3% in RoboNet. Compared with PhyDNet, which also disentangles features in two branches,
Iso-Dream achieves better performance in both PSNR and SSIM. It shows that our Iso-Dream has
a stronger ability of disentanglement learning to achieve long-term prediction. Moreover, Figure 3]
shows an interesting result of the different training sets (i.e., BAIR, BAIR+bouncing balls) and the
same testing set (i.e., BAIR). Iso-Dream is the only approach that achieves improvements when
training on noisy data with bouncing balls, as shown in Figure [5{red bars). In this training setup, it
performs best on the standard test set without balls. Iso-Dream is built on a more efficient architecture
than the baseline models. It provides a general framework that can be easily extended to other
backbones.

Qualitative results. We visualize a sequence of predicted frames on BAIR with bouncing balls in
Figure[6] Specifically, the output of two branches and corresponding masks are provided. We can see
from these demonstrations that the world model of Iso-Dream is more accurate in modeling future
dynamics for long-term prediction. It shows the fact that the action-free branch learns noncontrollable
dynamics, while the action-conditioned branch learns controllable dynamics related to input action.
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Figure 6: Showcases of video prediction results on the BAIR robot pushing dataset. We display
every 3 frames in the prediction horizon. The generated masks show that each branch of Iso-Dream
captures coarse localisation of controllable representations and noncontrollable representations.

5 Conclusions

In this paper, we proposed an MBRL framework named Iso-Dream, which mainly tackles the
difficulty of vision-based prediction and control in the presence of complex visual dynamics. Our
approach has two novel contributions to world model representation learning and corresponding
MBRL algorithms. First, it learns to decouple controllable and noncontrollable latent state transitions
via modular network structures and inverse dynamics. Further, it makes long-horizon decisions by
rolling-out the noncontrollable dynamics into the future and learning their influences on current
behavior. Iso-Dream achieves competitive results on the CARLA autonomous driving task, where
other vehicles can be naturally viewed as noncontrollable components, indicating that with the help of
decoupled latent states, the agent can make more forward-looking decisions by previewing possible
future states in the action-free network branch. Besides, [so-Dream was shown to effectively improve
the visual control task in a modified DeepMind Control Suite, as well as the visual prediction task on
the BAIR robot pushing dataset and the RoboNet dataset.

One limitation of Iso-Dream is the computational efficiency. Compared with DreamerV2, it requires
longer training time per episode due to more intensive state transitions in behavior learning. But
fortunately, from Figure (a)] Iso-Dream is more sample-efficient than existing MBRL methods.
Another limitation is the special treatment for different environments. In our preliminary experiments,
we attempted to use the same model architecture for all test benchmarks. However, we observed that
different benchmarks have specific requirements on the network structure, which we found should be
dependent on our prior knowledge of the environments.
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